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This paper compares various techniques of measuring the generalization ability of
a neural network used for model-updating purposes. An appropriate metric for measuring
generalization ability is suggested, and it is used to investigate and compare various neural
network architectures and training algorithms. The e!ect of noise on generalization ability is
considered, and it is shown that the form of the noise does not appear important to the
networks. This implies that the optimum training location may be obtained by considering
a simple noise model such as Gaussian noise. Various radial basis function neurons and
training algorithms are considered. Signi"cant improvements to generalization ability are
noted by merging the holdout and training data sets before training the second layer of the
network, after the network architecture has been decided. The Gaussian radial basis
function is rejected as the radial basis function of choice, due to uncertainty regarding an
appropriate value for the spread constant. It is noted that several alternative radial basis
functions without spread constants, such as the thin-plate spline, give excellent results.
Finally, the use of jitter and committees to improve the generalization ability of networks is
considered. It is found that jitter makes neither improvement nor degrades the results. It is
also found that a committee of networks performs better than any single network. A good
method of generating committee members is to split the available data evenly into multiple
random holdout and training data sets.
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1. INTRODUCTION

Previous work [1] introduced a method of updating "nite element (FE) models using neural
networks. A key property of neural networks is the ability to generalize, that is, to produce
sensible results from data that have not previously been seen. The aim of this paper is to
perform a detailed investigation of the nature of the network generalization, and to suggest
improvements to neural network training algorithms.

Section 2 will discuss network generalization in more detail, and section 3 will investigate
and compare various measures of generalization ability. In section 4, di!erent approaches
to training networks will be compared using an appropriate measure, and in section 5
several techniques to improve generalization will be considered. The aim is to produce an
approach to neural network training that will result in the best generalization ability for
model updating purposes. Great computational e!ort is required to generate training data
for neural networks, and it seems prudent to spend some e!ort to obtain the maximum
bene"t from it.
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2. NATURE OF NETWORK GENERALIZATION

Neural networks learn the target values of training data input vectors during training.
However, the usefulness of the networks stems from their ability to respond sensibly to
input vectors that were not contained in the training data set; that is, the ability to
generalize.

In order for a network to generalize successfully, several conditions must be met:

f the underlying function must be su$ciently smooth; a network can learn a function with
a "nite number of discontinuities, but not totally chaotic or random functions;

f the training data must provide enough information to learn the underlying function, i.e.,
generalization may fail if there are hidden variables a!ecting the training data that are not
shown to the network, or if noise has swamped the available information;

f the network must have enough &&freedom'' to learn the training data. This is a key point
that will be considered in this paper; and

f the network should only be asked to respond to inputs that lie within the region of the
training data (interpolate). If it is asked to respond in areas that lie without the training
data (extrapolate) then the results will often be invalid.

All the networks used in the paper are radial basis functions. These are self-organizing
networks and as such have not pre-de"ned structure. The network grows to "t the problem
by adding neurons until a speci"ed error goal is reached. Figure 1 shows an RBF network
successfully modelling a sinusoid when trained with some noisy observations from the
underlying function. The response of the network is sensible when interpolating, but the
extrapolation ability of the network is very poor. It is unreasonable to expect
a non-parametric regression technique such as neural networks to extrapolate well.

The problems of overtraining and undertraining a neural network are now brie#y
discussed. Figure 2 shows the responses of two di!erent networks to the same noisy
Figure 1. Interpolation versus extrapolation for a neutral network: ))))))))), underlying function; **, network
output; s, training data point.



Figure 2. Under"tting and over"tting neural networks: ))))))))), underlying function; **, over"tting output;
} - } -, under"tting output; s, training data point.
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observations of the underlying function. The "rst network, shown as the dashed}dotted
line, has clearly failed to model some of the main features of the underlying function;
it has under"tted the data. The second network, shown as the solid line, has over"tted
the data. This network has modelled the noise on the data, not the underlying function.
Over"tting is problematic, as it can be di$cult to distinguish between a network
that has matched the training data well and one that has over"tted the training
data.

The over"tting/under"tting dilemma (or trade-o! ) can also be considered in statistical
terms as a bias/variance trade-o!. Bias error refers to the di!erence between the underlying
function and the average output of the neural network. For example, consider a network
that is trained many times, each time with a di!erent set of noisy data taken from the same
underlying function. If the network consistently under"ts the data, then it has a high bias
error. The variance error refers to the sensitivity of the network outputs to the particular
training data set chosen.

It can be seen that a network with few neurons will have a high bias error (i.e., fail to
model the underlying function) but a low variance error (i.e., its response is not sensitive
to the particular training data chosen). A network with a large number of neurons will tend
to have a low bias but a high variance. Thus, there is a trade-o! between bias and variance.

There is, however, one way to reduce both the bias and variance errors of a neural
network model consistently, and that is to increase the amount of training data available
[2]. Fortunately, for model updating it is possible to generate an amount of training data
limited only by computer time.

The next section will consider how to measure the generalization ability of a neural
network for model updating purposes. This measure will be used to "nd the optimum
termination point during network training.
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3. MEASURES OF GENERALIZATION

There are many possible strategies for measuring the generalization properties of neural
networks. They can be divided into two broad categories: (1) holdout measures; and
(2) whole set measures.

These categories of generalization measure will be compared using two-test FE
models*a 10-element cantilevered beam and a free}free T-shaped plate.

3.1. FE MODELS AND UPDATING APPROACH

This section will describe the two simple test FE models, and the basic neural network
updating approach used. See reference [1] for a more detailed explanation and an
introduction to neural networks.

The 10-element cantilevered beam used was introduced in reference [1]. Twenty di!erent
updating parameters, or p-values, were used with this model, one for the mass and one for
sti!ness of each element. The choice of mass and sti!ness as updating parameters is often
inappropriate for large classes of model updating problems. The problem in this form is
inherently ill-conditioned, which makes it the ideal example for the generalization
simulations shown in this paper.

The second test structure used is a 10 element T-shaped plate (Figure 3) with free}free
boundary conditions. The parameters used for each element of the plate are: density
"7850 kg/m3, Young's modulus"2)1]1011 N/m2, thickness"3)5 mm, the Poisson
ratio"0)3. All elements are square, of dimension 100 mm]100 mm.

Ten updating parameters are considered for the T-shaped plate, namely the 10 elemental
sti!ness parameters. Thus, the updating parameters p

1
to p

10
correspond to the sti!ness of

elements 1}10 as labelled in Figure 3.
The updating procedure consists of generating a set of training data and using this data to

train a Gaussian radial basis function (RBF) neural network, using the orthogonal least
squares (OLS) training algorithm. The (simulated) measured experimental data are applied
to the network, which then produces a set of FE model adjustments. This results in an
updated FE model. Note that the spread constant of every RBF neuron in the "rst layer of
the network is set equal to the mean of the Euclidean distance between all pairs of input
vectors in the training data.
Figure 3. A T-shaped free}free plate model.
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The training data consist of pairs of input and output vectors. Each output vector
contains a particular set of alterations made to the p-values of the model. Each
corresponding input vector contains a selection of the modal data resulting from applying
these p-values to the model. Thus, the network should be able to learn how variations to the
p-values a!ect the modal data.

For the cantilevered beam, the modal data used consists of the "rst three bending and
two extensional modes, together with their natural frequencies. Rotational information was
ignored, so each input vector contained "ve modes (of length 10) and "ve natural
frequencies (scaled numerically to be of a similar order of magnitude to the mode shapes).
Thus, the 20 p-values are estimated using input vectors of length 55.

For the T-shaped plate, only the out-of-plane translational d.o.f.s are included in the
training data; in-plane translational and all rotational d.o.f.s are not retained. The model
has 22 nodes, so each mode shape contributes 22 terms to the training data. The "rst "ve
mode shapes and natural frequencies are shown to the network, so each experimental input
vector is of length 115 (5 mode shapes of length 22, and 5 natural frequencies). All rigid-body
modes are omitted from the training data. Note that examining the e!ects of including
di!erent amounts of modal data in the input vector on the updating procedure is outside the
scope of this paper.

3.2. HOLDOUT MEASURES OF GENERALIZATION

With two test FE models and the basic updating procedure established, the remainder of
section 3 will consider how to determine when to terminate the OLS training algorithm to
produce an optimum network.

The generalization ability of an RBF neural network typically improves during the early
stages of learning, as new neurons are added to the network. However, during later stages
the network can over"t the training data, degrading its generalization ability. Holdout
measures use a second set of data (the holdout or validation set) to score the generalization
potential of the network at various stages of training. The holdout set is not used directly in
training the network, but instead to determine the optimum point to stop training.

The optimum training termination point is typically chosen when the generalization
error &&starts to increase''. However, since the generalization measurement can #uctuate, it
can be di$cult to decide whether an increase in generalization error is due to over"tting or
a simple #uctuation. A robust solution is to measure the generalization error as each new
neuron is added to the network, until all the training data are used. The network with the
minimum generalization error is then used.

Before a holdout set can be used it is necessary to decide what data should make up the
holdout set, and how the generalization ability of a given network should be measured with
this set. This second question is not trivial; an inaccurate measure of generalization can
skew the selection of the optimum network signi"cantly.

3.3. EXAMPLES OF HOLDOUT DATA SETS

Two di!erent types of training data were considered in reference [1]. The "rst, termed the
change-one data set, consisted of varying each p-value in turn whilst holding the remaining
p-values unchanged. This ensures that the network can see the e!ects of adjusting each
p-value, but it does not include the e!ects of adjusting multiple p-values. Consequently,
a second data set, the line data set was introduced. This involved setting a random selection



Figure 4. Typical target p-value vectors from the holdout data sets: ))))))))), rand holdout set;**, line holdout
set; } ) } ) } , diag holdout set.
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of neighbouring p-values to a uniformly distributed random value. Figure 4 shows the
p-values for a typical member of the line data set (solid line on graph).

The training data set consists of the union of the change-one and line data sets. For the
change-one data set, each parameter is set in turn to M!0)8, !0)4, !0)2, 0)2, 0)4, 0)8N. 50
members of the line data set are added to this change-one set, with line p-values adjusted
between !0)8 and 0)8. Thus, the cantilevered beam training set contains 170 observations
from the FE model, and the T-shaped plate training data set contains 110.

An additional holdout data set will be generated for both of the test cases to measure the
generalization. However, it is not clear what form this holdout set should take; should it be
additional observations from the line data set, an additional change-one observation, or
a di!erent type of data set that the network has not seen? Three di!erent holdout data sets
will be considered and their properties examined.

The "rst holdout set consists of 200 additional observations from the line data set. It is
estimated that 200 observations will give an accurate measure of generalization ability, but
this will be examined in more detail later. Note that the network has &&seen'' 50 observations
from the line data set during training, so it is possible that the network response to this sort
of example is unreasonably good and a di!erent training set would produce worse results.
Consequently, a second and third holdout set will be tested, using types of adjustments to
the p-values that the network has not seen during training.

The second holdout set contains 200 observations from the diag set. Each member of the
line set is generated by selecting random minimum and maximum p-value numbers, and
setting all of the p-values between these numbers to a uniformly distributed random
variable. For the diag set the selected p-values are instead set to linearly interpolated values
between uniformly distributed independent start and end values. Consequently, the diag set
is a superset of the line set. Figure 4 shows typical p-value settings for a member of the diag
set (dash}dot line), for the T-shaped plate.
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The third holdout set consists of 200 observations from the rand data set. Rand is the
most general set possible; each p-value is independently, uniformly distributed between the
extreme values. This data set is much more di$cult for neural networks to model than the
previous two sets. A typical member of the rand set is also shown in Figure 4 (dotted line).
Note that for each of the three holdout sets the p-values are bounded between !0)8 and
0)8, as for the training data.

3.4. GENERALIZATION ERROR METRICS

With the three holdout sets chosen, it remains to decide how to measure the
generalization error of a network. A standard measure is the mean-squared error (MSE):
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Figures 5 and 6 show how the MSE generalization measure varied for the three holdout

sets during the training of both test cases. Several points are notable about these results.
Firstly, the diagonal and line holdout data sets performed similarly for both of the test cases,
but the random set performed very di!erently. These results actually show the failure of the
networks to respond well to the random set, since similar MSE values result from randomly
guessing the p-values instead of using the network response. This failure is perhaps not
surprising. It would be an exceptional network that could generalize from the training data
set to model the random set successfully.
Figure 5. Generalization measure using holdout sets for the cantilevered beam: ))))))))), rand holdout set; **,
line holdout set; } - } -, diag holdout set.



Figure 6. Generalization measure using holdout sets for the T-shaped plate: ))))))))), rand holdout set;**, line
holdout set; } - } -, diag holdout set.
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The second point to note is that although the line and diagonal holdout sets give similar
measures of the generalization error, the MSE curve is #at for a large range of neurons,
especially for the cantilevered beam case. This causes concern, because the MSE results for
a network containing one neuron are similar to those of a network containing 100 neurons.
The network containing only one neuron will obviously under"t the underlying function,
and should result in a poor generalization measure. Hence, selecting the network with the
minimum MSE could result in selecting an inferior network.

The reasons for the poor performance of the MSE measure can be seen by examining the
network response to a typical member of the holdout set, at various stages during training.
Four di!erence network responses for a cantilevered beam holdout case are shown in
Figure 7. The cantilevered beam has 20 p-values, but the p-values do not all have the same
&&strength''. For example, alterations to the sti!ness near the root (p-values, 1}4) or the mass
near the tip (p-values, 17}20) will result in larger changes to the modal parameters than
equivalent alterations made elsewhere on the model.

Column 3 of Table 1 shows the MSE results of the four cases considered in Figure 7. It is
striking that the MSE value of case A (0)0376) is actually lower than that of case C (0)0468).
Case C has produced good results for the least-sensitive p-values (1}6, 14}20) and poor
results for the most sensitive p-values (7}13). The MSE has penalized this poor performance
on the less important p-values.

This highlights a #aw in the MSE as a generalization measure for model updating
purposes; a single erroneous p-value can result in a very poor score for an otherwise
excellent result. This tends to #atter networks that are under"tting the underlying function.
Clearly, a measure of generalization error is required that is both robust and capable of
penalizing networks that are under"tting.

The generalization error measures can be made more robust by considering the absolute
di!erence between the two p-value sets, instead of the squared di!erence. Additionally, the



Figure 7. Various network responses to the cantilevered beam test case using a single holdout case: ))))))) , input
value; ** , net response. (a) 1 neuron; (b) 55 neurons; (c) 75 neurons and (d) 150 neurons.

TABLE 1

¹he generalization measures for the four cases considered in Figure 7

Median absolute error,
non-zero terms only,

Case No. of neurons MSE Median absolute error (GENDIFF)

A 1 0)0376 0)0062 0)373
B 55 0)0134 0)0518 0)108
C 75 0)0468 0)0678 0)210
D 150 0)0860 0)1055 0)484
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median can be used instead of the mean to compare each set of p-values. The use of the
median tends to reduce the e!ects of a few erroneous p-values on the generalization error.
Note: although the median is used to obtain a generalization error for each test case, the
mean is used to average these individual errors over the whole test, because each test case is
equally important. The results of using this median absolute error (MedAE in equation (2))
on the four test cases considered are shown in Table 1, Column 4:
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Figure 8. GENDIFF generalization measure using diag holdout set, cantilevered beam.
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Again, these results do not re#ect adequately the performance of the network. The
under"tting network (case A) has been assigned an excellent generalization error of 0)0062.
This has occurred because the median has eliminated the four erroneous non-zero p-values
(nos. 13}16) from the measure, leaving only the 16 correct zero p-values. This new measure
is not appropriate for holdout sets such as diag, where many of the target p-values are zero,
because it #atters a network that simply returns zeros regardless of the input to the network.

The MedAE measure can be improved by considering only the p-values that have
non-zero targets, and simply ignoring the p-values that have a zero target. The results
obtained using this new measure, termed GENDIFF (see equation (3)), are shown in
Table 1, Column 5. This new measure penalizes both networks that under"t and over"t
(cases A and D). Whilst it may seem risky to ignore many of the p-values in each individual
member of the holdout set, the GENDIFF measure does provide a robust measure of
network generalization ability, if enough observations are used in the holdout set:
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Figure 8 shows the GENDIFF value of the diagonal holdout set for the cantilevered
beam case. Clearly, both the under"tting and over"tting regions of the network are
penalized.

To summarize, the measure of generalization that will be used to decide when to
terminate training is the median absolute error of the non-zero terms of the holdout set,
averaged over every case in the holdout set. It is encouraging that the diagonal and line
holdout sets show very similar behaviour, but it is necessary to decide which of the two
holdout sets to use as the standard holdout set. Arbitrarily, the diagonal set is used, purely
because the network has not seen any cases of the diagonal type during training.
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3.5. EFFECTS OF NOISE ON NETWORK RESPONSE

Most real-world neural network applications perform network training using noisy data.
The model updating application of neural networks has an advantage in that the training
data set is guaranteed to be noise free, since it is obtained from the analytical model.
However, the aim is to obtain a network that will respond sensibly to actual experimental
data, which will be noisy. Consequently, it is essential that the response of the network to
noisy input data is considered.

If there is a choice between two forms of a network that: (1) respond excellently to clean
data but very poorly to contaminated data; or (2) respond reasonably well to noisy data but
relatively badly to clean data, then clearly the network that responds best to noisy data is
preferable. The previous section considered network training and testing using noise-free
data. It will be shown in this section that the generalization performance of the network on
clean data is not necessarily a good guide to its performance with noise contaminated data.

The GENDIFF termination criterion obtains the optimum training point with respect to
a particular holdout set. As mentioned previously, the 200 observation diagonal holdout set
is considered the standard holdout set. Figure 8 shows how, for the cantilevered beam the
GENDIFF measure on the standard holdout set varied as each neuron was added.
However, the standard holdout set is noise free and thus gives no indication of how well
a given network responds to noise.

To consider the e!ects of noise on the generalization properties of the models, the input
vectors of the holdout set were contaminated with various degrees of proportional
Gaussian noise, as
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is the jth element of the ith input vector and r
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is an observation from the
normal distribution N (0, p2).

Note that the corresponding target vectors remain clean, because the aim is to obtain the
correct classi"cation despite using noise contaminated data. The training data set also
remains noise free. The degree of noise is set by the parameter p, the standard deviation.
A value of p of 0)1 is de"ned as 10% noise. Figure 9 shows the GENDIFF measure for the
T-shaped plate model, for eleven di!erent Gaussian noise cases with the noise varying from
0 to 10% in 1% increments.

It can be seen that increasing the amount of Gaussian noise tends to increase the
optimum GENDIFF value. This shows that the accuracy of the results obtained from the
networks is reduced as the amount of noise increases, as expected. However, the
degradation is gradual, seeming to vary linearly with the amount of noise. This is
encouraging because if the addition of a small amount of noise caused the updating method
to fail completely, then the method would be of no practical use. Many earlier updating
methods su!ered from this drawback [3].

A second point to note is that the optimum number of neurons decreased as the amount
of noise applied to the holdout set increased. This is shown in Figure 10 (the solid lines) for
both test models. The same qualitative behaviour was noted for both test cases, suggesting
that the optimum number of neurons for noisy data is lower than that of noise-free data.
However, it is dangerous to draw general conclusions when the only noise model that has
been considered is proportional Gaussian noise. Proportional Gaussian noise has two
properties that may aid the networks in dealing with the noise-contaminated data: "rstly it
is unbiased (zero mean), and secondly numerically small entries in the input vectors are not
altered by signi"cant absolute amounts.



Figure 9. The e!ect of Gaussian noise on optimum generalization point, for the T-shaped plate:
, generalization measure; s, minimum location.

Figure 10. The e!ect of various noise types on optimum generalization point: **, Gaussian noise; )))))))),
uniform noise; } - } -, biased noise.
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It is essential to consider noise models that do not have these helpful properties in order
to assess the response of the neural networks to contaminated data more accurately. To
consider biased noise, the same proportional Gaussian noise model is used but with the



Figure 11. The e!ect of various noise types on optimum GENDIFF value:**, Gaussian noise; )))))))), uniform
noise; } - } -, biased noise.
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absolute (i.e., positive) value of the term r
ij

applied to the input vectors:
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This form of noise has a mean of approximately 0)8p; that is, as the percentage of noise
increases, so does the bias of the noise. The "nal noise model considered is uniformly
distributed noise, scaled by the largest value of the input vector. This form of noise applies
a similar absolute error to all the terms. Note that the parameter p (and hence percentage
noise) in equation (6) does not represent the actual standard deviation for the noise case

(analysis shows it is a factor of J12 too large):
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where u
ij

is an observation from the uniform distribution ; (!p/2, p/2).
The optimum number of neurons for the two extra noise models are also shown in

Figure 10, as the dotted line and the dash}dotted line. Figure 11 shows the optimum
GENDIFF value obtained for the three di!erent noise models on the two test cases. It is
striking how similarly the networks have responded to the di!erent noise models, despite
the di!erence between the response of the two test cases.

The three noise models are highly simplistic when compared with any noise that reality
may produce. However, the fact that the networks have responded in a virtually identical
fashion to the three di!erent noise models suggests two useful properties:

(1) Neural networks are not sensitive to the details of the noise, but to the distance
(in some sense) from the noisy input vector to the ideal noise-free input vector.
This could be a highly useful property, because most noise models are not realistic;
and



Figure 12. The variation of GENDIFF measure versus holdout set size.
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(2) The optimum generalization point for a network can be obtained by considering the
network response to data corrupted with proportional Gaussian noise.

Therefore, to recap:

f to obtain the optimum number of neurons, the standard holdout set is applied to the
network with varying amounts of Gaussian proportional noise applied to the input
vectors;

f the GENDIFF measure is calculated for each noise case as each new neuron is added to
the net;

f the optimum number of neurons is obtained for each noise case; and
f the median of these values is used as the "nal termination point.

As an arbitrary compromise between accuracy and speed of calculation, the practical
holdout test used to train networks will consider "ve di!erent noise cases, with 2, 4, 6, 8 and
10% Gaussian noise.

The "nal point to consider about the use of holdout sets as a measure of generalization is
the size of the holdout set. At the beginning of this section an arbitrary decision was made to
use holdout sets containing 200 observations. It was simply hoped that this would be
enough cases to model the generalization properties. To test whether this is true, Figure 12
shows how the GENDIFF metric varies for the noise-free case of the T-shaped plate at the
optimum number of neurons, as the size of the holdout set is increased. It can be seen that
the metric has nearly converged to a value after 60 observations have been considered, so
a set of 200 seems more than su$cient. Similar behaviour was noted for the cantilevered
beam holdout set.
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3.6. WHOLE SET MEASURES OF GENERALIZATION

A disadvantage of the holdout method is that a signi"cant amount of valuable training
data is only used for network size selection, not for network training. There are two possible
approaches commonly mentioned in the literature that allow the generalization ability of
a network to be estimated whilst using all of the available data to train the network. These
are information measures and cross-validation, and they will be considered below.

Information measures, such as the Akaike Information Criterion [4] and Bayes
Information Criterion [5] typically use a formula to judge the &&amount'' of information that
a network has seen in comparison to the number of weights (and hence generalization
potential) that the network contains. However, these methods were derived for linear
models and can perform inadequately for non-linear models. Initial tests performed on
simple updating problems produced poor results, with the criteria not measuring the
generalization ability of the networks. Considering the complexity of the model updating
problem, it seems sensible to reject information criteria as a measure of generalization.

Cross-validation (CV) is another method for estimating the generalization error of
a neural network without the use of a holdout set. To perform a cross-validation test the
training data are randomly split into i di!erent subsets, where i is decided in advance. The
network is trained i times, each time using i!1 of the sets as training data and the
remaining set as a holdout set. The generalization error of each holdout set is calculated in
turn, and combined to form an estimate of the generalization error of a network trained
using all of the data.

If i is equal to the number of training data observations, then the CV process is known as
leave-one-out cross-validation. The CV process becomes more expensive to calculate as
i increases, although for single-output networks the leave-one-out cross-validation
measure can be calculated in a more e$cient manner using linear algebra theory [6].

Whilst the holdout approach gives an estimate of the optimum number of neurons, it is
not clear how this information from the individual cross-validation networks can be
combined. One possible approach is to calculate the optimum number of neurons for each
CV network, using the GENDIFF measure on the particular holdout set (with Gaussian
noise). If these i results are averaged then a "nal network can be trained using all of the
available data, with training terminating at this previously determined number of neurons.
The "nal network will be trained using more training data than each of the individual CV
networks. This may cause the choice of optimum number of neurons to be inaccurate (an
underestimate), especially if i is small.

Figure 13 shows the results obtained for the T-shaped plate when i"20. Each of the
grey lines shows the GENDIFF results of one of the 20 CV runs. Clearly many of these runs
show highly erratic behaviour, with poor generalization. These results can skew the mean
GENDIFF value of the 20 runs, rendering it useless as a generalization estimate. The
median is more robust to these outliers, and is also shown in Figure 13.

Cross-validation is rejected as a training method for the following reasons. Firstly, if
a value of i is used that is too low, then each CV network has signi"cantly fewer training
data observations than the total data set. This renders the estimate of the optimum number
of neurons inaccurate. If i is too high then the holdout sets are very small, causing many of
the CV runs to be highly suspect.

Secondly, a great deal of computational e!ort is spent in training the multiple networks.
For the two test cases considered, it is considerably cheaper to spend some of the computer
time in generating a large holdout set. Additionally, if the computer time is spent in
generating a large holdout set, then the neural network is tested over a greater sample of the
underlying function. This increases con"dence in the results.



Figure 13. The results of i"20 cross-validation runs, for the T-shaped plate:**, single cross-validation run;
, mean of the 20 CV runs; , median of the 20 CV runs.
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Cross-validation is most appropriate when training data is hard to acquire, rendering
holdout sets too expensive in terms of information withheld from the network. This is not
the case for the model updating methodology considered here. It is possible that, for very
large FE models, the CV approach will be cheaper than generating additional observations
from the model. However, the approach will not be considered further for network training.
Instead, the previous 200-strong diagonal holdout set will be used.

4. OPTIMUM NETWORK TRAINING STRATEGY

The remainder of this paper will be spent considering methods to improve the
generalization ability of the neural networks. The previous sections established that
a holdout set with proportional Gaussian noise using the GENDIFF metric is an
appropriate way to obtain the optimum number of neurons for a given network. This
section will consider possible improvements to the standard RBF network training method
used previously.

Possible improvements to the RBF network include using alternative types of RBF
neurons, and examining of the e!ects of the spread constant. Additionally, various
alterations to the OLS training algorithm could be examined. Both of these approaches will
be considered below.

Firstly, it is necessary to consider how to compare the generalization potential of di!erent
trained networks. The previous section established that holdout sets are a good method of
measuring generalization potential. Unfortunately, the holdout set used to obtain the
optimum training point of a network cannot then be used to estimate its generalization
ability. This is because the network has in some sense &&seen'' the holdout data set, despite its
absence from the training data. The holdout set would give an optimistically biased
estimate of the generalization potential.
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This necessitates the use of a third set of data to be used for network comparison
purposes. The set used here will be another data set from the diag data set containing 1000
observations from the FE model. This should be an adequate number of cases to obtain
a representative measure of the generalization ability of the network. The third data set,
called the generalization set, will be presented to a trained network 5 times with varying
degrees of Gaussian proportional noise applied to the input vectors. As before, the amounts
of noise used will be 2, 4, 6, 8 and 10%. The GENDIFF values of the "ve di!erent noise
cases will be calculated. The mean of these "ve GENDIFF values will be termed the GEN
value for the network, and will be used as an independent measure of the generalization
ability of the network.

4.1. OPTIMUM SPREAD CONSTANT AND NEURON TYPE

Up until this point, all of the RBF neurons used in the "rst layer have used Gaussian
radial basis functions, with the spread constant determined by the median Euclidean
distance between the training data input vectors. This estimate of the spread constant
should produce a reasonable network response, but it is possible that alternative values may
be superior. Figures 14 and 15 show the GEN measurement resulting from training 100
di!erent networks with di!erent spread constant values, for the two test models. Each of the
100 networks was trained to the minimum GENDIFF criterion. The median, minimum and
maximum Euclidean distances between any two of the training data cases are shown as
vertical dotted lines.

These results show that the median estimate of the spread constant is not optimal for the
cantilevered beam case. Indeed, optimal results for both cases are obtained by using higher
than expected values of the spread constant. At these values, each Gaussian RBF neuron is
active over a wide volume of the input space, so the neurons are not local. Since non-local
Gaussian neurons have produced good results, this suggests that other non-local neuron
types that do not require spread constants may be successful. The thin-plate spline function
(equation (7)) is commonly used as an RBF function. The GEN value obtained by using the
thin-plate spline function is shown in Figures 14 and 15 as the horizontal dotted line:

/ (t)"t2 ln t. (7)

The thin-plate spline function produced GEN results that were almost as good as the best
result for the Gaussian neuron, without the need for a spread constant. This makes
thin-plate spline RBF neurons superior to Gaussian neurons for model updating purposes.
Note that there are many other non-local RBF functions that could be used, such as the
cubic function (equation (8)) and even the identity function (equation (9)).

/(t)"t3, (8)

/ (t)"t. (9)

The identity function still produces a non-linear RBF neuron, because it is applied to the
Euclidean distance between the input vector and the centre of the neuron. Table 2 shows the
GEN results produced by all of the neuron types considered.

Whilst the thin-plate spline function produced adequate generalization in both cases,
Gaussian neurons with the optimal spread constant produced better results. This optimal
spread constant value could be found by training multiple networks using di!erent spread
constants, and selecting the optimum network afterwards. Unfortunately, this is a very



Figure 14. The e!ect of varying spread constant on generalization ability, for the cantilevered beam.

Figure 15. The e!ect of varying spread constant on generalization ability, T-shaped plate.
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expensive technique, and most of the sub-optimal spread constant values are worse than the
thin-plate spline neuron results. Also, the thin-plate spline function is more commonly used
in the literature than the cubic or linear RBFs [2]. Consequently, the thin-plate spline
function will be used as the standard RBF neuron.



TABLE 2

¹he generalization results obtained using di+erent radial basis functions

GEN value, GEN value,
Function type cantilevered beam T-shaped plate

Gaussian function 0)220 0)114
Spread constant"initial guess

Gaussian function 0)102 0)0924
Spread constant"best value

Thin-plate spline function 0)116 0)0978
Cubic function 0)130 0)100
Linear function 0)105 0)110

TABLE 3

¹he e+ect of including holdout data in second-layer training

GEN value * holdout set included
Model GEN value * initial in second layer training

Cantilevered beam 0)1166 0)1093
T-shaped plate 0)0978 0)0907
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The use of a holdout set with the thin-plate spline function means that the user does not
have to set any parameters (e.g., spread constant, error goal) for network training; it is now
a fully automated procedure.

4.2. IMPROVING RBF TRAINING ALGORITHM

This section will brie#y consider an improvement to the OLS training algorithm. Firstly,
it is noted that the holdout set is currently discarded after use. The members of the holdout
set cannot be used as centres in the "rst layer of the RBF network* to do so would require
an additional holdout set to judge the generalization ability of the new network, and this is
not available. However, after the OLS algorithm has obtained the optimum "rst layer
architecture, the holdout set can be merged with the training data for the linear
optimization process that sets the weights in the second layer. Table 3 shows the di!erence
resulting from this simple change.

This improvement requires virtually no extra time, and produces networks that are
superior to the standard OLS algorithm. Accordingly, this technique will be considered part
of the standard training algorithm for the remainder of this paper.

To summarize the results from this section, the standard network strategy consists of
using an RBF network with thin-plate spline function RBF neurons in the "rst layer. This
network is trained using the standard OLS algorithm, and the holdout set is merged with
the training data set for the "nal second layer training step, after the network architecture
has been "xed.
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5. IMPROVING GENERALIZATION ABILITY

The neural network literature abounds with methods claiming to improve the
generalization ability, robustness and training time of a given network [7]. It would be an
unending task to test each of these methods. However, some of the approaches to improving
generalization ability seem to have gained respectability and will be considered here.

There are two main approaches to preventing a given network from over"tting the
training data, which is the main cause of poor generalization. These are structural
stabilization and regularization. Structural stabilization involves selecting a network
architecture that is not capable of over"tting the data, because it has the optimum number
of parameters or &&amount of freedom''. This is actually the approach that has been
considered earlier; the use of a holdout set to obtain the optimum network architecture is
a form of structural stabilization.

The regularization approach involves selecting a model architecture that may be capable
of over"tting the data, and constraining the weights of the network such that over"tting
networks are discouraged. For example, many common regularization approaches penalize
values of the weights that produce oscillating functions in favour of smooth functions.
Another common method of performing regularization is to add a controlled amount of
noise to the training data. This approach is called training with jitter. Whilst the addition of
noise to clean training data may seem perverse, it has been shown [8] that the use of jitter
can, in some cases, prevent the network from overtraining. This will be considered below.

5.1. TRAINING WITH JITTER

The use of jitter supposedly reduces over"tting by preventing the network training
algorithm from getting a &&lock'' on the exact position of every point in the training data. It
also seems reasonable that training the network with noisy data might improve the
response to noisy inputs.

There are two types of jitter that may be applied to RBF network training. Both involve
applying a degree of Gaussian proportional noise to the clean training data at various
stages during training. The degree of noise applied is an important parameter because if too
little jitter is applied then it will have little e!ect on training, but if too much is used then it
will degrade the training data.

The "rst approach involves applying jitter to the clean training data before each
additional neuron is selected, so the OLS algorithm sees a di!erent set of training data at
each step. The results of using various degrees of this form of jitter are shown in Figure 16,
for both test cases. It is not clear that the use of jitter has improved the generalization
ability.

The second form of jitter considered is only applied to the training data for training the
second layer of the network. The "rst layer is always trained using noise-free data. If the
underlying function is su$ciently smooth, then a small change to an input vector should not
signi"cantly perturb its corresponding target vector. This can be used to generate additional
training cases from the original data set, by repeating the set several times and adding
independent jitter to each of the copies. It is hoped that this enhanced set may result in
improved generalization ability.

The results of applying this form of jitter to the cantilevered beam model are shown in
Figure 17. This "gure shows that increasing the amount of jitter simply degraded the
network response. Additionally, making copies of the training data set appears to make
little di!erence to the results. Given this poor performance of jitter-related training, this
technique is not considered useful for this application.



Figure 16. The results of applying jitter to training data for RBF layer training: ))))))) , cantilevered beam;**,
T-shaped plate.

Figure 17. The results of applying jitter and repeating data sets for linear layer training, cantilevered beam:
**, 1 copy; )))))))) , 2 copies; - - - - -, 3 copies; - ) - ) - )-, 4 copies; - )) -)) -, 5 copies.
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5.2. NETWORK COMMITTEES

The "nal method of improving the generalization potential of neural networks
considered in this paper is the use of a committee of networks. A committee consists of
multiple networks, each trained in a slightly di!erent fashion. For example, some members
of the committee might consist of networks trained using di!erent training data, or
termination criteria, or di!erent radial basis functions or even di!erent training algorithms.
The output of the committee is composed of the mean of the output of each of the
committee members. The response of a trained committee is shown in equation (10)

g (MxN)"
1

N
comm

G
Ncomm

+
i/1

g
i
(MxN)H , (10)

where N
comm

is the number of members of the committee, g
i
is the ith committee member

(trained network) and g (MxN) is the committee response to the input vector MxN.
The generalization properties of various compositions of committees will now be tested.

The "rst test considers generating committee members by altering the composition of the
training and holdout sets. The standard RBF network, termination criteria and training
algorithm are used. To generate the di!erent committee members, the standard training and
holdout data sets are pooled. Each new committee member is generated by assigning new
holdout and training data sets randomly from the pool of data, with each set containing half
of the available data.

Figure 18 shows the results for the cantilevered beam test case as more networks are
added to the committee. The dashed line shows the generalization ability of each individual
network. The solid line shows the GEN measure of the committee, as each new network is
added. The results suggest that a committee of networks can signi"cantly outperform
Figure 18. The use of committees, cantilevered beam: - - - -, nth network only; **, mean response of "rst
n networks.



TABLE 4

¹he generalization results obtained using committees

Mean of the 50 Committee GEN value using mean of the
Model members individual GEN values output of all 50 members

Cantilevered beam 0)1051 0)0961
T-shaped plate 0)0890 0)0796

Figure 19. The e!ect of the composition of committees on generalization ability, cantilevered beam.
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a single network. The solid line shows a clear, near-asymptotic downward trend as more
networks are added. Similar results were obtained for the plate model. Table 4 summarizes
the results, showing that the committees produced the best GEN values obtained in this
paper. It seems from Figure 18 that the committee results stabilized as the size of the
committee reached 10 networks. Hence, a committee consisting of around 20 networks
should produce adequate results.

The "nal consideration is the ratio of the size of the training data set to the holdout data
set. The 50/50 split used previously was arbitrary selected. If smaller training sets are used,
then there will be signi"cant variation between the committee members, and each member
will have its optimum training point measured well. On the other hand, large training sets
mean that each individual member is more accurate, but there is less variation between the
members. It is not clear which approach will produce better results.

Figure 19 shows the generalization results of various compositions of the data sets for
small committees (each committee shown contains "ve members). The data set composition
does not seem to make a signi"cant di!erence, as long as more than about 30% of the data
is used in the training data set for each member. The optimum composition seems to use
around 50}60% of the available data in the training set, so the initial estimate of 50%
appears adequate.
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6. CONCLUDING REMARKS

This paper has shown that measuring and improving the generalization ability of neural
networks is not a trivial task. Throughout, the results and observations are based on
examples. The standard measure of generalization ability, namely the mean-squared error
of a holdout set, does not produce good results for model updating problems. A more
robust measure was suggested, and shown to perform well in many tests throughout the
paper.

The e!ect of noise on generalization ability was considered, and it was shown that neural
networks perform well in the presence of noise. Additionally, the form of the noise did not
seem important to the networks. This implies that the optimum training location may be
obtained by considering a simple noise model such as Gaussian noise.

Various radial basis function types and training algorithms were considered. Signi"cant
improvements to generalization ability were noted by merging the holdout and training
data sets for training the second layer of the network, after the network architecture has
been decided. The Gaussian radial basis function was rejected as the radial basis function of
choice, due to uncertainty regarding an appropriate value for the spread constant. It was
noted that several alternative radial basis functions without spread constants gave excellent
performance. The thin-plate spline neuron was used, primarily because of its common
occurrence in the literature.

Finally, the use of jitter and committees to improve the generalization ability of networks
was considered. It was found that jitter neither made an improvement nor degraded the
results. It was also found that a committee of networks performed better than any single
network. A good method of generating committee members is to split the available data
evenly into multiple random holdout and training data sets.
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